top of page
HealthyFox-logo-01-1320x528.png
HF-LOGO-Name-1320x710.png

What is D.N.A and why should I care about NAD?

Writer's picture: Healthy FoxHealthy Fox

Updated: Feb 8

“Reducing your biological-age is something everyone is interested in, even everyone here at Healthy Fox has a passion for reducing age-related dysfunctions. NAD+ iv therapy (used by many celebrities) is a powerful tool for repairing DNA and improving cell age, unfortunately at a high price tag of up to $1,000 for your sessions. We offer a bioavailable precursor NMN, that naturally boosts your body’s NAD+ levels without the high price tag. Reducing your biological age has a spectrum of benefits inside and outside your body!”





D.N.A


Advanced Liposomal NAD+ Support for Healthy Aging

D.N.A is a potent formula containing nicotinamide mononucleotide (NMN) and trimethylglycine (TMG) to support healthy aging and cellular function. The primary ingredient, NMN, serves as a stable precursor to nicotinamide adenine dinucleotide (NAD+), a vital coenzyme for energy production, DNA repair, and cell survival. TMG acts as a methyl donor, enhancing NMN's action. D.N.A utilizes liposomal delivery for superior bioavailability and effectiveness.


NAD+ and Healthy Aging


NAD+ is involved in over 500 enzymatic reactions critical for energy production, metabolism, aging, gene expression, stress response, and DNA repair¹,². Levels of NAD+ decline with age, which has been associated with age-related conditions, including type 2 diabetes⁷, neurodegenerative disorders⁶,⁸, cardiovascular diseases, and obesity²,⁹,¹⁰. NAD+ turnover may also be disrupted by increased activation of enzymes such as PARP1 and CD38 or reduced synthesis¹²,¹⁸. Enhancing NAD+ levels can promote healthy aging by activating sirtuins—NAD+-dependent enzymes crucial for mitochondrial function, inflammation regulation, and overall cellular health²¹,²².


Benefits of D.N.A

  • Supports healthy aging

  • Promotes cellular repair and mitochondrial function

  • Enhances energy production and metabolism

  • Aids cognitive function and brain health

  • Encourages proper circadian rhythm and stress response


Nicotinamide Mononucleotide (NMN)


NMN is a direct precursor to NAD+ and is efficiently absorbed and converted into NAD+ in various tissues²⁶,²⁷. Studies demonstrate that supplementation with NMN supports:

  • Metabolic and Cardiovascular Health: Improves glucose tolerance, lipid profiles, and blood sugar homeostasis while aiding in beta-cell function and reducing inflammatory cytokines¹⁴,²⁸,²⁹.

  • SIRT1 Activation: Helps regulate oxidative stress, inflammation, and circadian rhythms¹⁴.

  • Cellular and Tissue Repair: Reduces damage from ischemia and cardiac stress, likely through oxidative stress mitigation and mitochondrial preservation³⁰,³¹.

  • Brain Health: Enhances mitochondrial function, reduces neuronal cell death, and improves energy metabolism in the brain, potentially reducing the risk of age-related cognitive decline¹⁴,³⁴–³⁶.


A small human study involving NMN supplementation demonstrated no adverse effects and dose-dependent increases in NAD+ levels, confirming safety and efficacy³⁷.



Liposomal Delivery for Enhanced Absorption


D.N.A utilizes advanced liposomal delivery technology, ensuring:

  • Superior Nutrient Absorption: Phospholipid structures facilitate intracellular delivery.

  • Effective Bioavailability: Smaller particles (50–100 nm) enhance absorption through the gastrointestinal tract and oral mucosa.

  • Improved Targeting: Liposomes cross the blood–brain barrier and extend circulation time.

  • Convenience: Liquid formulation allows for personalized dosing and ease of use.

Phospholipids in D.N.A are derived from sunflower lecithin, ensuring they are soy-free and non-GMO.


References : 


  1. Hong W, Mo F, Zhang Z, Huang M, Wei X. Nicotinamide mononucleotide: a promising molecule for therapy of diverse diseases by targeting NAD+ metabolism. Front Cell Dev Biol. 2020;8:246. doi:10.3389/fcell.2020.00246.


  2. Okabe K, Yaku K, Tobe K, Nakagawa T. Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci. 2019;26(1):34. doi:10.1186/s12929-019-0527-8.


  3. Poddar SK, Sifat AE, Haque S, Nahid NA, Chowdhury S, Mehedi I. Nicotinamide mononucleotide: Exploration of diverse therapeutic applications of a potential molecule. Biomolecules. 2019;9(1):34. doi:10.3390/biom9010034.


  4. Braidy N, Berg J, Clement J, et al. Role of Nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: Rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Signal. 2019;30(2):251-294. doi:10.1089/ars.2017.7269.


  5. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One. 2012;7(7):e42357. doi:10.1371/journal.pone.0042357.


  6. Zhu XH, Lu M, Lee BY, Ugurbil K, Chen W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci U S A. 2015;112(9):2876-2881. doi:10.1073/pnas.1417921112.


  7. Wu J, Jin Z, Zheng H, Yan LJ. Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes. 2016;9:145-153. doi:10.2147/DMSO.S106087.


  8. Lautrup S, Sinclair DA, Mattson MP, Fang EF. NAD+ in Brain Aging and Neurodegenerative Disorders. Cell Metab. 2019;30(4):630-655. doi:10.1016/j.cmet.2019.09.001.


  9. Zhang M, Ying W. NAD+ deficiency is a common central pathological factor of a number of diseases and aging: Mechanisms and therapeutic implications. Antioxid Redox Signal. 2019;30(6):890-905. doi:10.1089/ars.2017.7445.


  10. Yoshino J, Baur JA, Imai SI. NAD+ intermediates: The biology and therapeutic potential of NMN and NR. Cell Metab. 2018;27(3):513-528. doi:10.1016/j.cmet.2017.11.002.


  11. Clement J, Wong M, Poljak A, Sachdev P, Braidy N. The plasma NAD+ metabolome is dysregulated in "normal" aging. Rejuvenation Res. 2019;22(2):121-130. doi:10.1089/rej.2018.2077.


  12. Camacho-Pereira J, Tarragó MG, Chini CCS, et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 2016;23(6):1127-1139. doi:10.1016/j.cmet.2016.05.006.


  13. Garten A, Schuster S, Penke M, Gorski T, de Giorgis T, Kiess W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol. 2015;11(9):535-546. doi:10.1038/nrendo.2015.117.


  14. Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14(4):528-536. doi:10.1016/j.cmet.2011.08.014.


  15. Alshahrani A, AlDubayee M, Zahra M, et al. Differential expression of human n-alpha-acetyltransferase 40 (hNAA40), nicotinamide phosphoribosyltransferase (NAMPT) and sirtuin-1 (SIRT-1) pathway in obesity and T2DM: Modulation by metformin and macronutrient intake. Diabetes Metab Syndr Obes. 2019;12:2765-2774. doi:10.2147/DMSO.S228591.


  16. Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324(5927):651-654. doi:10.1126/science.1171641.


  17. Stein LR, Imai S. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J. 2014;33(12):1321-1340. doi:10.1002/embj.201386917.


  18. Hurtado-Bagès S, Knobloch G, Ladurner AG, Buschbeck M. The taming of PARP1 and its impact on NAD+ metabolism. Mol Metab. 2020;38:100950. doi:10.1016/j.molmet.2020.01.014.


  19. Nakagawa T, Guarente L. Sirtuins at a glance. J Cell Sci. 2011;124(pt 6):833-838. doi:10.1242/jcs.081067.


  20. Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol. 2007;21(8):1745-1755. doi:10.1210/me.2007-0079.


  21. Gomes AP, Price NL, Ling AJ, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624-1638. doi:10.1016/j.cell.2013.11.037.


  22. Satoh A, Brace CS, Rensing N, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18(3):416-430. doi:10.1016/j.cmet.2013.07.013.


  23. Clark SJ, Falchi M, Olsson B, et al. Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity. Obesity (Silver Spring). 2012;20(1):178-185. doi:10.1038/oby.2011.200.


  24. Figarska SM, Vonk JM, Boezen HM. SIRT1 polymorphism, long-term survival and glucose tolerance in the general population. PLoS One. 2013;8(3):e58636. doi:10.1371/journal.pone.0058636.


  25. Totomoch-Serra A, Muñoz ML, Burgueño J, Revilla-Monsalve MC, Diaz-Badillo A. Association of common polymorphisms in the VEGFA and SIRT1 genes with type 2 diabetes-related traits in Mexicans. Arch Med Sci. 2018;14(6):1361-1373. doi:10.5114/aoms.2018.74757.


  26. Ramsey KM, Mills KF, Satoh A, Imai S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell. 2008;7(1):78-88. doi:10.1111/j.1474-9726.2007.00355.x.


  27. Mills KF, Yoshida S, Stein LR, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795-806. doi:10.1016/j.cmet.2016.09.013.


  28. Revollo JR, Körner A, Mills KF, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007;6(5):363-375. doi:10.1007/s00125-011-2288-0.


  29. Caton PW, Kieswich J, Yaqoob MM, Holness MJ, Sugden MC. Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia. 2011;54(12):3083-3092. doi:10.1007/s00125-011-2288-0.


  30. Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One. 2014;9(6):e98972. doi:10.1371/journal.pone.0098972.


  31. Zhang R, Shen Y, Zhou L, et al. Short-term administration of nicotinamide mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J Mol Cell Cardiol. 2017;112:64-73. doi:10.1016/j.yjmcc.2017.09.001.


  32. de Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522-530. doi:10.1111/acel.12461.


  33. Mateuszuk Ł, Campagna R, Kutryb-Zając B, et al. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochem Pharmacol. 2020;178:114019. doi:10.1016/j.bcp.2020.114019.


  34. Ryu D, Mouchiroud L, Andreux PA, et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016;352(6292):1436-1443. doi:10.1126/science.aaf6846.


  35. Xie L, Yin X, Luo J, et al. Nicotinamide mononucleotide improves mitochondrial function, ameliorates the metabolic syndrome, and extends lifespan in mice. Cell Metab. 2021;33(1):66-84. doi:10.1016/j.cmet.2020.11.008.


  36. Tarantini S, Valcarcel-Ares MN, Toth P, et al. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 2019;24:101192. doi:10.1016/j.redox.2019.101192


  37. Irie J, Inagaki E, Fujita M, et al. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr J. 2020;67(2):153-160. doi:10.1507/endocrj.EJ19-0313.

Comments


bottom of page